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ABSTRACT

We present and describe a catalog of galaxy photometric redshifts (photo-z’s) for the Sloan Digital Sky Survey
(SDSS) Data Release 6 (DR6). We use the neural network (NN) technique to calculate photo-z’s and the nearest
neighbor error (NNE) method to estimate photo-z errors for ~77 million objects classified as galaxies in DR6 with
r < 22. The photo-z and photo-z error estimators are trained and validated on a sample of ~640,000 galaxies that
have SDSS photometry and spectroscopic redshifts measured by SDSS, the Two Degree Field, the SDSS Luminous
Red Galaxy and Quasi-stellar Object Survey (2SLAQ), the Canada-France Redshift Survey (CFRS), the Canadian
Network for Observational Cosmology Field Galaxy Survey (CNOC?2), the Team Keck Redshift Survey (TKRS), the
Deep Extragalactic Evolutionary Probe (DEEP), and DEEP2. For the two best NN methods we have tried, we find that
68% of the galaxies in the validation set have a photo-z error smaller than ogg = 0.021 or 0.024. After presenting our
results and quality tests, we provide a short guide for users accessing the public data.

Subject headings: catalogs — distance scale — galaxies: distances and redshifts — large-scale structure of universe

Online material: color figures

1. INTRODUCTION

While spectroscopic redshifts have now been measured for
over one million galaxies, in recent years digital sky surveys have
obtained multiband imaging for on the order of a hundred million
galaxies. Deep, wide-area surveys planned for the next decade
will increase the number of galaxies with multiband photometry
to a few billion. Due to technological and financial constraints,
obtaining spectroscopic redshifts for more than a small frac-
tion of these galaxies will remain impractical for the foresee-
able future. As a result, over the last decade substantial effort
has gone into developing photometric redshift (photo-z) tech-
niques, which use multiband photometry to estimate approxi-
mate galaxy redshifts. For many applications in extragalactic
astronomy and cosmology, the resulting photometric redshift
precision is sufficient for the science goals at hand, provided
one can accurately characterize the uncertainties in the photo-z
estimates.

Two broad categories of photo-z estimators are in wide use:
template-fitting and training set methods. In template fitting, one
assigns a redshift to a galaxy by finding the redshifted spectral
energy distribution (SED), selected from a library of templates,
that best reproduces the observed fluxes in the broadband filters.
By contrast, in the training set approach, one uses a training set
of galaxies with spectroscopic redshifts and photometry to derive
an empirical relation between photometric observables (e.g., mag-
nitudes, colors, and morphological indicators) and redshift. Exam-
ples of empirical methods include polynomial fitting (Connolly
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etal. 1995), the nearest neighbor method (Csabai et al. 2003), the
nearest neighbor polynomial (NNP) technique (C. Cunha et al.
2008, in preparation), neural networks (NN; Collister & Lahav
2004; Vanzella et al. 2004; d’Abrusco et al. 2007), and support
vector machines (Wadadekar 2005). When a large spectroscopic
training set that is representative of the photometric data set to be
analyzed is available, training set techniques typically outperform
template-fitting methods, in the sense that the photo-z estimates
have smaller scatter and bias with respect to the true redshifts
(C. Cunhaet al. 2008, in preparation). On the other hand, template
fitting can be applied to a photometric sample for which relatively
few spectroscopic analogs exist. For a comprehensive review
and comparison of photo-z methods, see C. Cunha et al. (2008, in
preparation).

In this paper, we present a publicly available galaxy photomet-
ric redshift catalog for the sixth data release (DR6) of the Sloan
Digital Sky Survey (SDSS) imaging catalog (Blanton et al. 2003;
Eisenstein et al. 2001; Gunn et al. 1998; Ivezi¢ et al. 2004; Strauss
et al. 2002; York et al. 2000). We use the NN photo-z method,
which we have shown to be a superior training set method
(C. Cunha et al. 2008, in preparation), and briefly compare the
results using different photometric observables. We also compare
the NN results with those from NNP, an empirical method which
achieves similar performance to the NN method (C. Cunha et al.
2008, in preparation). Since the SDSS photometric catalog covers
alarge area of sky, a number of deep spectroscopic galaxy samples
with SDSS photometry are available to use as training sets, as
shown in Figure 1. In combination, these spectroscopic samples
cover the full apparent magnitude range of the SDSS photometric
sample.

The paper is organized as follows. In § 2, we briefly describe
the SDSS DR6 photometric catalog and the selection criteria used
to obtain the galaxy photometric sample from the catalog. In
§ 3, we describe the spectroscopic catalogs used to construct the
photo-z training and validation sets. In § 4, we outline the photo-z
methods, as well as the photo-z error estimator technique ap-
plied to the galaxy sample. Statistical results for photometric
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Fic. 1.—Normalized -magnitude distributions for various catalogs. Top three rows: Distributions of the spectroscopic catalogs used for photo-z training and validation
for 2SLAQ, CFRS, CNOC2, TKRS, DEEP, and DEEP2, and the SDSS spectroscopic sample. Ny, denotes the total number of galaxy measurements used from each
catalog; for galaxies in regions with repeat SDSS imaging, each independent photometric measurement is counted separately. Bottom row: Distribution of the combined
spectroscopic sample (left) and distribution for the SDSS photometric galaxy sample (right), where objects were classified as galaxies according to the photometric TYPE
flag (see text). [See the electronic edition of the Journal for a color version of this figure.)

redshift performance, errors, and redshift distributions are pre-
sented in § 5. In § 6, we make recommendations for possible ad-
ditional cuts on the photo-z catalog based on our own flags and
those in the SDSS database. In § 7, we briefly describe how to
access the photo-z catalog from the public SDSS data server, and
in § 8, we present our conclusions. For completeness, Appendix A
provides the database query used to select the photometric sample,
Appendix B discusses issues of star-galaxy separation, and Ap-
pendix C briefly describes an earlier version of the photo-z algo-
rithm used for SDSS DRS (Adelman-McCarthy et al. 2007).

2. SDSS PHOTOMETRIC CATALOG
AND GALAXY SELECTION

The SDSS comprises a large-area imaging survey of the north
Galactic cap, a multiepoch imaging survey of an equatorial stripe
in the south Galactic cap, and a spectroscopic survey of roughly
10° galaxies and 103 quasars (York et al. 2000). The survey uses
a dedicated, wide-field, 2.5 m telescope (Gunn et al. 2006) at
Apache Point Observatory, New Mexico. Imaging is carried out
in drift-scan mode using a 142 megapixel camera (Gunn et al.

20006) that gathers data in five broad bands, ugriz, spanning the
range from 3000 to 10,000 A (Fukugita et al. 1996), with an
effective exposure time of 54.1 s per band. The images are pro-
cessed using specialized software (Lupton et al. 2001; Stoughton
etal. 2002), and are astrometrically (Pier et al. 2003) and photomet-
rically (Hogg et al. 2001; Tucker et al. 2006) calibrated using
observations of a set of primary standard stars (Smith et al. 2002)
observed on a neighboring 20 inch (50.8 cm) telescope.

The imaging in the sixth SDSS data release (DR6) covers an
essentially contiguous region of the north Galactic cap, with only
a few small patches remaining to be observed. In any region where
imaging runs overlap, one run is declared primary® and is used for
spectroscopic target selection; other runs are declared secondary.
The area covered by the DR6 primary imaging survey, includ-
ing the southern stripes, is 8417 deg?, but DR6 includes both the
primary and secondary observations of each area and source
(Adelman-McCarthy et al. 2008).

© For the precise definition of primary objects, see http://cas.sdss.org/dr6/en/
help/docs/glossary.asp#P.
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TABLE 1
PHOTOMETRIC SAMPLE PROPERTIES

AB Magnitude Limits

22.0
222
222
213
20.5

W NN W N

Nortes.—Magnitude limits are for 95%
completeness for point sources in typical
seeing; 50% completeness numbers are gen-
erally 0.4 mag fainter (Adelman-McCarthy
et al. 2007). The median seeing for the
SDSS imaging survey is 1.4”.

The SDSS database provides a variety of measured magnitudes
for each detected object. Throughout this paper, we use dered-
dened model magnitudes to perform the photometric redshift
computations. To determine the model magnitude, the SDSS pho-
tometric pipeline fits two models to the image of each galaxy in
each passband: a de Vaucouleurs (early-type) and an exponential
(late-type) light profile. The models are convolved with the esti-
mated point spread function (PSF), with arbitrary axis ratio and
position angle. The best-fit model in the » band (which is used to
fix the model scale radius) is then applied to the other passbands
and convolved with the passband-dependent PSFs to yield the
model magnitudes. Model magnitudes provide an unbiased color
estimate in the absence of color gradients (Stoughton et al. 2002),
and the dereddening procedure removes the effect of Galactic ex-
tinction (Schlegel et al. 1998).

To construct the photometric sample of galaxies for which we
wish to estimate photo-z’s, we obtained a catalog drawn from the
SDSS CasJobs Web site.” We checked some of the SDSS pho-
tometric flags to ensure that we have obtained a reasonably clean
galaxy sample. In particular, we selected all primary objects from
DR6 that have the TYPE flag equal to 3 (the type for galaxy),
and that do not have any of the flags BRIGHT, SATURATED, or
SATUR_CENTER set. For the definitions of these flags, we refer
the reader to the PHOTO flags entry at the SDSS Web site® or to
Appendix A. We also took into account the nominal SDSS flux
limit (see Table 1) by only selecting galaxies with dereddened
model magnitude r < 22.0. The full database query we used is
given in Appendix A.

The photometric galaxy catalog we selected suffers from im-
purity and incompleteness at some level, since the photometric
pipeline cannot separate stars from galaxies with 100% success
at faint magnitudes. We describe some of our tests of star-galaxy
separation in Appendix B, where we show that the SDSS TYPE
flag provides star-galaxy separation performance similar to other
methods.

The final photometric sample comprises 77,418,767 galaxies.
The r-magnitude distribution of this sample is shown in Figure 1

7 See http://casjobs.sdss.org/casjobs/.
8 See http://cas.sdss.org/dré/en/help/browser/browser.asp.
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(bottom right); the g — r and r — i color distributions are shown in
Figure 2 (bottom).

3. SPECTROSCOPIC TRAINING AND VALIDATION SETS

Since our methods to estimate photo-z’s and photo-z errors are
training set based, we would ideally like the spectroscopic train-
ing set to be fully representative of the photometric sample to be
analyzed, i.e., to have similar statistical properties and magnitude/
redshift distributions. Training set methods can be thought of
as inherently Bayesian, in the sense that the training set distri-
butions form effective priors for the analysis of the photometric
sample; to the extent that the training set distributions reflect those
of the photometric sample, we may expect the photo-z estimates to
be unbiased (or at least they will not be biased by the prior). Given
the practical difficulties of carrying out spectroscopy at faint mag-
nitudes and low surface brightness, such an ideal generally cannot
be achieved. Realistically, all we can hope for is a training set
that (1) is large enough that statistical fluctuations are small and
(2) spans the same magnitude, color, and redshift ranges as the
photometric sample. Fortunately, our tests indicate that the esti-
mated photo-z’s depend only weakly on the shape of the redshift
and magnitude distributions of the training set for the SDSS.

We have constructed a spectroscopic sample consisting of
639,911 galaxies that have SDSS photometry measurements
(counting repeats; see below) and that have spectroscopic red-
shifts measured by the SDSS or by other surveys, as described
below. We imposed a magnitude limit of » < 23.0 on the spec-
troscopic sample and applied additional cuts on the quality of the
spectroscopic redshifts reported by the different surveys. Since
we impose a limit of » < 22.0 for the SDSS photometric sample,
the fainter limit chosen for the spectroscopic training sample ac-
commodates the full photometric range of interest without cre-
ating boundary effects for photo-z’s of galaxies with magnitudes
near the photometric sample limit of » = 22. Each survey pro-
viding spectroscopic redshifts defines a redshift quality indicator;
we refer the reader to the respective publications listed below for
their precise definitions. For each survey, we chose a redshift
quality cut roughly corresponding to 90% redshift confidence
or greater. The SDSS spectroscopic sample provides 531,672
redshifts, principally from the MAIN and luminous red galaxy
(LRG) samples, with a confidence level zqons > 0.9. The remain-
ing redshifts are: 21,123 from the Canadian Network for Observa-
tional Cosmology Field Galaxy Survey (CNOC2; Yee et al. 2000);
1830 from the Canada-France Redshift Survey (CFRS; Lilly et al.
1995) with Class > 1; 31,716 from the Deep Extragalactic Evo-
lutionary Probe (DEEP; Davis et al. 2001) with g, = A or B and
from DEEP2 (Weiner et al. 2005)9 with Zgualiy > 3; 728 from the
Team Keck Redshift Survey (TKRS; Wirth et al. 2004) with
Zquality > —1; and 52,842 LRGs from the Two Degree Field,
SDSS LRG, and Quasi-stellar Object Survey (2SLAQ; Cannon
et al. 2006)'? with z,, > 3.

We positionally matched the galaxies with spectroscopic red-
shifts against photometric data in the SDSS BestRuns Catalog
Archive Server (CAS) database, which allowed us to match with
photometric measurements in different SDSS imaging runs. The
above numbers for galaxies with redshifts count independent pho-
tometric measurements of the same objects due to multiple SDSS
imaging of the same region; in particular, SDSS Stripe 82 has been
imaged a number of times. The numbers of unigue galaxies used
from these surveys are 1435 from CNOC?2, 272 from CFRS, 6049

° See http://deep.berkeley.edu/DR2/.
19" See http://Irg. physics.uq.edu.au/New_dataset2/.
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Fic. 2.—Distribution of g — r and r — i colors for different SDSS samples. 7op: Color distributions for galaxies in the SDSS spectroscopic sample. Middle: Color dis-
tributions for galaxies in the other (non-SDSS) spectroscopic training samples. Bottom: Color distributions for galaxies in the photometric sample. As above, galaxy/star
classification used the photometric TYPE flag. [See the electronic edition of the Journal for a color version of this figure.]

from DEEP and DEEP2, 389 from TKRS, and 11,426 from
2SLAQ. The SDSS spectroscopic samples were drawn from the
SDSS primary galaxy sample, and therefore are all unique.

The spectroscopic sample obtained by combining all these cat-
alogs, including the repeats, was divided into two catalogs of the
same size (~320,000 objects each). One of these catalogs was
taken to be the training set used by the photo-z and error esti-
mators, and the other was used as a validation set to carry out tests
of photo-z quality (see § 4.1). In our tests, we have found that in-
cluding the repeat imaging reduces the photo-z scatter at the few
percent level compared to photo-z methods trained without the
repeats, provided all the photometric measurements for a given
object are confined to either the training set or the validation set,
and are not mixed. This improvement is due to the fact that repeat
measurements allow the training set methods to more fully char-
acterize the effects of magnitude errors on the photometric red-
shifts. In addition, the repeats help the training methods to avoid
overfitting to a particular realization of the objects’ photometry.
We find that this feature of the repeats is particularly helpful for
faint training set galaxies (» > 21) whose magnitude errors are
large. Furthermore, excluding such multiple images from the
spectroscopic sample would result in much smaller training and
validation sets; these would be very sparse at faint magnitudes,

leading to much diminished photo-z quality. However, we were
careful not to place the repeat images of a single galaxy in both
the training and validation sets, so as to not lose the independence
of the two sets (see § 4.1).

The r-magnitude and color (g — r and r — 7) distributions for
the spectroscopic samples and for the photometric sample are
shown in Figures 1 and 2. While the magnitude and color distri-
butions of the combined spectroscopic sample are not identical
to those of the photometric sample, the spectroscopic sample does
span the range of apparent magnitude and color of the photometric
sample. To test the impact of having a training set that is not fully
representative of the photometric sample, we divided the spectros-
copic sample into smaller, alternate training and validation sets.
For instance, to test the effect of the training-set magnitude distri-
bution on the photo-z estimates, we created a training set with a
flat 7-magnitude distribution and another with an 7-magnitude dis-
tribution similar to that of the photometric sample. Our tests in-
dicated that the photo-z quality is not strongly affected by the
magnitude distribution of the training set. The changes in the
photo-z performance metrics (the rms scatter and the 68% CL
region, defined below in § 5) were smaller than 10% when the
training-set magnitude distribution was varied between these dif-
ferent choices. Since using the entire spectroscopic sample for the
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FiG. 3.—Simple FFMP network with three layers and configuration 2:1:1. The inputs are the two magnitudes, m; and m,. Ix denotes the input from node x, and Ox is the
corresponding output of this node. The weights w associated with each connection are found by training the network using training and validation sets (see text).

training and validation sets produced marginally better results
than all other cases tested, we have adopted this as our final choice.
In addition, we tested the effect of the size of the training set on our
photo-z calculations. We found that the photo-z performance met-
rics defined in § 5.1 are degraded by no more than 10% when the
training set is artificially reduced to 10% of its original size. Even
when the training set is reduced to ~1% of its original size, the
photo-z performance metrics are degraded by less than 25%. This
gives us confidence that the spectroscopic training set size used
here is sufficient for extracting nearly optimal photo-z estimates.

4. METHODS
4.1. NN and NNP Photometric Redshifts

The NN method that we use to estimate galaxy photo-z’s is a
general classification and interpolation tool used successfully in
an array of fields such as handwriting recognition, automatic air-
craft piloting,'" credit card fraud detection,'? and the extraction
of astronomically interesting sources in a telescope image (Bertin
& Amouts 1996).

We use a particular type of NN called a feed forward multilayer
perceptron (FFMP) to map the relationship between photometric
observables and redshifts. An FFMP network consists of several
input nodes, one or more hidden layers, and several output nodes,
all interconnected by weighted connections (see Fig. 3). We fol-
low the notation of Collister & Lahav (2004) and denote a net-
work with N; input nodes, N, nodes in hidden layer j, and N,
output nodes as N;:Nj,:Np,: . . . :Nj,:N,. For each input object,
the input photometric data (e.g., magnitudes, colors, concentra-
tions, etc.) are fed into the input nodes of the FFMP, which fire
signals according to the values of the input data. Each node in a
hidden layer receives as a total input a weighted sum of the out-
puts from the nodes in the previous layer; i.e., node i in a hidden
layer receives an input /; given by

I = Ziwij()p (1)

where O is the output of the jth node of the previous layer, and
wj; is the weight of the connection between node 7 in the hidden
layer and node j in the previous layer. Given the input /;, the output
O; of node i is a function f of the input,

0; :f(li)v (2)

" See http://www.nasa.gov/centers/dryden/news/NewsReleases/2003/03-49
.html.
12 See http://www.visa.ca/en/about /visabenefits /innovation.cfm.

where f'is the activation function. Repeating this process, sig-
nals propagate up to the output nodes. The activation function is
typically a sigmoid function:

1

f(fi)zm- (3)

However, there are various alternatives, such as step functions
and hyperbolic tangents. Vanzella et al. (2004) show that the
choice of activation functions makes no significant difference in
the result.

We use X:20:20:20:1 networks to estimate photo-z’s, where X
is the number of input photometric parameters per galaxy. The
corresponding number of degrees of freedom (the number of
weights) is roughly 1000, depending on the actual value of X. We
use hyperbolic tangent functions as the activation function of the
hidden layers and a linear activation function for the output layer.

Despite the occasional aura of mystery surrounding neural net-
works, an FFMP is nothing more than a complex mathematical
function; in fact, one can always write down the analytic expres-
sion corresponding to a neural network function.

Once the network configuration is specified, it can be trained
to output an estimate of redshift given the input photometric ob-
servables. The training process involves finding the set of weights
w;; that minimize a score function E, chosen here to be

1 i A\
E= Ezi(zspec - Zo) ) (4)

where zg,. is the measured spectroscopic redshift, z, is the out-
put redshift of the output node, and the sum is over all galaxies
in the training set. Note that the choice of score function is not
unique, and different choices will in general lead to different
photo-z estimates. The minimization of this score function can be
done efficiently, because its derivatives with respect to the weights
are available analytically. We use a variable metric method as de-
scribed in Press et al. (1992) for the minimization.

In machine learning, overfitting refers to the tendency of an
algorithm with many adjustable parameters to fit to the noise in
the training set data. In order to avoid overfitting, we use the tech-
nique of early stopping. The spectroscopic sample is divided into
two independent subsets, the training and validation sets, and the
formal minimizations are done using the training set. After each
minimization step, the network is evaluated on the validation set,
and the set of weights that performs best on the validation set is
chosen as the final set. Another issue in machine learning is that
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minimization procedures that start at different initial choices of
weights generally end at different local minima of the score func-
tion. To reduce the chance of ending in a less than optimal local
minimum, we minimize five networks starting at different posi-
tions in the space of weights. Among these, we choose the net-
work that gives the lowest photo-z scatter (cf. eq. [4]) in the
validation set. For more details of our implementation of the NN
and its performance on mock catalogs and real data, see C. Cunha
et al. (2008, in preparation).

The NN photo-z algorithm is very flexible in the sense that it is
easy to change the input parameters, the training set, and the net-
work configurations. We tried a variety of combinations of pos-
sible input photometric observables to see their effects on photo-z
quality. We calculated photo-z’s using galaxy magnitudes, colors,
and the concentration indices for some or all of the passbands. The
concentration index ¢; in passband i is defined as the ratio of
PetroR50 and PetroR90, which are the radii that encircle 50%
and 90% of the Petrosian flux, respectively. Early-type (E and
S0) galaxies, with centrally peaked surface brightness profiles,
tend to have low values of the concentration index, while late-
type spirals, with quasi-exponential light profiles, typically have
higher values of ¢. Previous studies (Morgan 1958; Shimasaku
etal. 2001; Yamauchi et al. 2005; Park & Choi 2005) have shown
that the concentration parameter correlates well with galaxy mor-
phological type, and we used it to help break the degeneracy be-
tween redshift and galaxy type. We present the photo-z results for
different combinations of input parameters in § 5.

For comparison, we also computed photo-z’s for the validation
set using another empirical method, the nearest neighbor poly-
nomial (NNP) technique (C. Cunha et al. 2008, in preparation). In
NNP, to derive a photo-z for a galaxy in the photometric sample,
we look for its training set nearest neighbors in the space of
photometric observables (magnitudes, colors, etc.). Suppose we
have Np photometric data entries for each galaxy. The data vec-
tor for the galaxy of interest in the photometric sample is denoted
byD# = (D',D?,. . .,D"P), while the data vector for the ith gal-
axy in the training set is D/ = (D}, D?,. . ., D}"*). The distance
d; between the photometric object and the ith training set galaxy is
defined using a flat metric in data space,

d>=3""" (p* - D). (5)

p=1

The nearest neighbors are the training set objects for which d; is
minimum. Once the nearest neighbors for a given galaxy are
identified, they are used to fit the coefficients of a local, low-order
polynomial relation between photometric observables and red-
shift. The galaxy photo-z is then obtained by applying the derived
relation to the photometric object.

For the NNP method employed in this work, we take the pho-
tometric data D* in equation (5) to be the four “adjacent” galaxy
colors u — g, g — r, r — i, and i — z; we found that this choice
produces results marginally better than those obtained using the
galaxy magnitudes. We use the nearest 1000 neighbors to fit a qua-
dratic polynomial relation between redshift and the photometric
data, here chosen to be the five magnitudes in each passband
(ugriz) and their corresponding concentration indices. We note that
Wang et al. (2007) used a similar technique to estimate photo-z’s
for a small sample of SDSS spectroscopic galaxies. They applied
the kernel regression method of order 0, weighting the training set
neighbors and computing photo-z’s by using the weighted average
of the neighbors’ redshifts. Our NNP method is closer to a kernel
regression of order 2, since we perform quadratic fits; however, we
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do not apply variable weights to the neighbors, but treat them
equally in the fit.

Whereas the NN method provides a single, nonlinear, global fit
using the whole training set and applies the derived photo-z rela-
tion to all photometric objects, the NNP method yields a sepa-
rate, linear (in parameters), local fit for each photometric object
using its neighbors. If the galaxy magnitude-concentration-redshift
hypersurface is a differentiable manifold, i.e., if it can be locally
approximated by a hyperplane, even though it is globally curved,
then these two photo-z methods should be roughly equivalent. In-
deed, as we show in § 5, their performance is very similar.

4.2. Photometric Redshift Errors

We estimated photo-z errors for objects in the photometric cat-
alog using the nearest neighbor error (NNE) estimator (Oyaizu
etal. 2007). The NNE method is training set based, with a neigh-
bor selection similar to the NNP photo-z estimator; it associates
photo-z errors to photometric objects by considering the errors
for objects with similar multiband magnitudes in the validation
set. We use the validation set, because the photo-z’s of the training
set could be overfit, which would result in NNE underestimating
the photo-z errors.

The procedure to calculate the redshift error for a galaxy in the
photometric sample is as follows. We find the validation set near-
est neighbors to the galaxy of interest. In contrast to NNP, for
which the distance in equation (5) is defined in color space, the
NNE distance is defined in magnitude space, since photo-z errors
correlate strongly with magnitude. Since the selected nearest
neighbors are in the spectroscopic sample, we know their photo-z
EITOrS, 62 = Zphot — Zspec, Where zphoy is computed using the NN or
the NNP method. We calculated the 68% width of the 6z distribu-
tion for the neighbors, and assigned that number as the photo-z
error estimate for the photometric galaxy. Here we selected the
nearest 200 neighbors of each object to estimate its photo-z error.
In studies of photo-z error estimators applied to mock and real gal-
axy catalogs, we found that NNE accurately predicts the photo-z
error when the training set is representative of the photometric
sample (Oyaizu et al. 2007).

4.3. Estimating the Redshift Distribution

As we shall see in § 5.1, estimates for galaxy photo-z’s suffer
from statistical biases that in general cannot be completely re-
moved on an object-by-object basis. However, we can seek an
unbiased estimate of the true redshift distribution for the pho-
tometric sample that is independent of individual galaxy photo-z
estimates. For some statistical applications, the redshift distribu-
tion of the photometric sample, as opposed to individual galaxy
photo-z’s, is all that is required. One way to estimate this distri-
bution is to assign a weight to every galaxy in the spectroscopic
sample such that the weighted spectroscopic sample has the same
distributions of magnitudes and colors as the photometric sam-
ple. The zg, distribution of this weighted spectroscopic sample
provides an estimate of the true, underlying redshift distribution
of the photometric sample.

The weight W of the ath spectroscopic galaxy is calculated
by comparing the local density around the galaxy in the spectro-
scopic sample with the density of the corresponding region in the
photometric sample. The local density is evaluated by count-
ing the number of nearest neighbors using the distance measured
in the space of photometric observables, as in equation (5). We fix
the number of spectroscopic neighbors, Ny, which determines the
distance dya to the Ngth-nearest spectroscopic neighbor. We then
find the number of neighbors Np in the photometric sample within
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the same distance dp,, of the spectroscopic galaxy. Up to an ar-
bitrary normalization factor, the weight is defined as

e~ (6)

For our estimates, we chose Ng = 20, which provides a good
match of the weighted spectroscopic distributions of magnitudes
and colors to those of the photometric sample. We note that if ad-
ditional cuts in magnitude or color are applied to the photometric
sample, then this procedure must be repeated for the newly se-
lected photometric sample. More details and tests of this method
and comparisons with other methods for estimating the underly-
ing redshift distribution (e.g., deconvolving the error distribution
from the zpyo distribution) will be presented separately (M. Lima
et al. 2008, in preparation).

5. RESULTS
5.1. Photometric Redshifts

The photo-z precision (variance) and accuracy (bias) are lim-
ited by a number of factors. There are intrinsic degeneracies in
magnitude-redshift space: low-luminosity, intrinsically red galax-
ies at low redshift can have apparent magnitudes similar to those
of high-luminosity, intrinsically blue galaxies at high redshift.
This natural degeneracy is amplified by photometric errors, since
magnitude uncertainties propagate to photo-z errors. In addition
to these observational limitations, which are determined by the
photometric precision and the number of passbands of a survey,
the photo-z estimator itself may have inherent limitations. For
example, for training set methods, the size and representativeness
of the training set are important factors, as are the number of pa-
rameters or weights in the fitting functions.

To test the quality of the photo-z estimates, we use four photo-z
performance metrics. The first two metrics are the photo-z bias,
Zpias, and the photo-z rms scatter, o, both averaged over all N ob-
jects in the validation set, defined by

1 N i i
Zbias — ﬁ Zi:l (thot - Zspec) ) (7)
1 N i i )2
02 :NZi:l (thot_zspec) ' (8)

The third performance metric, denoted by o, is the range con-
taining 68% of the validation set objects in the distribution of
0z = Zphot — Zspec- This metric is useful because the probability
distribution function P(6z) is in general non-Gaussian and asym-
metric (for a Gaussian distribution, o and ogg coincide). Explicitly,
o¢g 1s defined by the value of |zph0[ — zspec| such that 68% of the
objects have |thot — Zgpec } < 0¢g. We also use the 95% region oys,
defined similarly. In addition to these global metrics, we also de-
fine local versions of them in bins of redshift or magnitude.

To search for an optimal photo-z estimator, we computed
photo-z’s using the NN method with different combinations of
input photometric observables. Five of these combinations are
listed in Table 2. In the first case, dubbed O1, the training and
photo-z estimation are carried out using only the five magnitudes
ugriz. In case C1, we use the five magnitudes and the five concen-
tration indices ¢,, ¢4, ¢, ¢;, and ¢, as the input parameters. In
case CC1, we use only the four colors u — g, g — r, r — i, and
i — z. In case CC2, we combine the four colors with the concen-
tration indices ¢, c,, and ¢; in the gri filters. Finally, in case D1,

we use the ugriz magnitudes and the ¢,, ¢, ¢,, ¢;, and ¢, con-
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TABLE 2
SummARY OF NN CASES

Case Inputs/Description o O6s8
ugriz 0.0525 0.0229
Ugriz + ¢,CyCrCic; 0.0519 0.0224
ugriz + cycycrcic: (split training) 0.0519 0.0209
u—g, g—r,r—i,i—z 0.0668 0.0272
U—g,g—7r,1r—1,1i—z+cyCr¢; 0.0593 0.0245

Note.— Photo-z performance metrics o and oeg for the validation set using dif-
ferent input parameters (magnitudes, colors, and concentration indices) and training
procedures.

centration indices, but we split the training set and the photo-
metric sample into five bins of » magnitude and perform sep-
arate NN fits in each bin. In all five cases, we use an NN with three
hidden layers, and tune the number of hidden nodes to keep the to-
tal number of degrees of freedom of the network roughly the same
for all cases.

Table 2 provides a summary of the performance results of the
different NN cases. We find that using concentration indices in
addition to magnitudes (C1 vs. O1) helps break some degenera-
cies, and reduces the photo-z scatter by a few percent. Using only
colors (CC1) degrades the photo-z performance by as much as
20%, mostly because the degeneracy between intrinsically red,
nearby galaxies and intrinsically blue, distant galaxies (with red
observed colors) cannot be broken. Adding concentration indices
to color-only training (CC2) helps break such a degeneracy, be-
cause the concentration index correlates with galaxy type and
hence intrinsic color. Of the five, case CC2 also yields the most
realistic photometric redshift distribution for the photometric sam-
ple (see § 5.2). Finally, splitting the training set and photometric
sample into magnitude bins (D1) produces results with the best
performance metrics (o and ogg) of all the NN cases we have
tested. We choose D1 and CC2 as the best NN cases, and describe
their results in more detail below; their outputs for the photometric
sample are included in the public DR6 database.

In Figure 4, we plot photometric redshift, zpho, for all objects
in the validation set versus true spectroscopic redshift, zgyec, for
the different photo-z methods and cases, and in different ranges
of » magnitude. The top row shows results for NN case D1, the
middle row shows the performance of NN case CC2, and the bot-
tom row shows results for the NNP method using magnitudes and
concentration indices as the input parameters. In each panel, the
values of the corresponding global photo-z performance metrics o
and o¢g are shown. The redshift bias zy;,s is typically much smaller
than o or ogg, since the photo-z methods are designed to mini-
mize it (see Fig. 5). In each panel of Figure 4, the solid line traces
Zphot = Zspec, 1.€., the line for a perfect photo-z estimator. The
dashed and dotted lines show the corresponding 68% and 95%
regions, defined as above but in zg,e. bins. Although each photo-z
method probes the hypersurface defined by the photometric ob-
servables and redshift in a different way, they produce very similar
results, suggesting that our results are limited not by the photo-z
technique employed, but by the intrinsic degeneracies in magnitude-
concentration-redshift space and by the photometric errors.

In Figures 5 and 6, we show the performance metrics zpjas, 0,
and oeg as functions of 7 magnitude and z,.. for the validation set
for the two preferred NN cases. We see that the photo-z precision
degrades considerably for objects with » > 20. This increased
scatter is expected, since the relative photometric errors increase
as the nominal detection limit of the SDSS photometry is ap-
proached (see Table 1). While the bias for CC2 increases at
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FIG. 4.—2Zpnot VS. Zgpec for the validation set for different ranges of ¥ magnitude and for different photo-z techniques. Left column: Objects with r < 20. Middle column:
Objects with » > 20. Right column: All objects. Top row: NN case D1, for which the input photometric data comprise the five magnitudes (ugriz) and the five concentration
parameters, and the training is split into five bins of » magnitude. Middle row: NN case CC2, for which the input data are the four colorsu — g, g — r,» — i, and i — z, and
the three concentration parameters ¢, ¢, and c;. Bottom row: Results for the NNP method, for which the input data are the five magnitudes and five concentration parameters. In
all cases, the photo-z methods used a training set with ~320,000 objects, and the derived solutions were applied to an independent validation set with ~309,000 objects and
r < 22, reflecting the magnitude limit of the photometric sample. The solid line in each panel indicates Zphot = Zspec; the dashed and dotted lines show the 68% and 95%
confidence regions as a function of zgy.. The points display results for a random 10% subset of the validation set in each magnitude range.

r < 17, we note that the fraction of objects in the photometric
sample that are that bright is very small. As a function of red-
shift, o and o increase dramatically beyond z ~ 0.6 for the val-
idation set. For the » < 20 part of the sample, the number of
spectroscopic objects with z > 0.6 is simply too small to charac-
terize the redshift-magnitude surface, as shown in Figure 7 (left).
For the faint objects (» > 20), the scatter is low for z between 0.4
and 0.6, and increases outside of that range. It is important to
note that the photo-z performance metrics were calculated inde-
pendently of spectral type. Since the neural network and the train-
ing set were not optimized for any specific galaxy population (e.g.,

galaxies in clusters) it is possible that certain galaxy types may
have photo-z’s with worse (or better!) biases and dispersion.

In Figure 7, we plot g — 7 color versus spectroscopic redshift
for the validation set for both bright (» < 20) and faint (» > 20)
galaxies. The 2SLAQ and DEEP2 galaxies are highlighted by
different shades of gray, and the expected color-redshift relations
for the four spectral templates from Coleman et al. (1980) (from
early to late types) are indicated by the solid lines. We see that for
the faint sample, in the range 0.4 < z < 0.6, the galaxies come
mostly from the 2SLAQ survey, which used specific color cuts to
select early-type galaxies atz ~ 0.5. Because early-type galaxies
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inated by faint objects with similar colors. In D1, this problem is alleviated by the
effective magnitude prior imposed by the training set. At faint magnitudes, the
performance degrades as the photometric errors increase.

have a well-defined 4000 A break feature, their photo-z’s are well
determined, and their photo-z scatter is low. Outside the range
0.4 < z < 0.6, the validation set at faint magnitudes is dominated
by bluer galaxies that do not have strong, broad spectral features,
resulting in the larger photo-z scatter seen in Figure 6.

Figure 6 shows that the common assumption that the photo-z
scatter scales as (1 4+ z) is not consistent with our estimates for
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the SDSS sample. The functional form of the scatter versus red-
shift depends strongly on the underlying galaxy type distribution.

5.2. Redshift Distributions

So far, we have considered the scatter and bias of photo-z es-
timates. As discussed in § 4.3, it is also of interest to consider the
predicted photo-z distribution as a whole. Different photo-z esti-
mators may achieve similar values for the metrics zyi,s, 0, and
068, but predict different forms for the photo-z distribution of the
photometric sample. As we shall see, this is the case with the two
NN cases D1 and CC2. We therefore define two additional per-
formance metrics to quantify the quality of the predicted photo-z
distribution. The first metric, ogis;, measures the rms difference
between the binned zypoe and zgpe distributions of the validation
set,

1 Noi . S \2
2 bin i i
Odist = Nb' Zi:l ( phot — Pspee) ) (9)

where Ppl;hot is the height of the ith redshift bin of the zyho dis-
tribution, P, __ is the height of the same redshift bin of the zgpe,
distribution, and Ny, is the total number of redshift bins used.
Here we use Ny, = 120 equally spaced redshift bins running
fromz=0toz=1.2.

The second redshift distribution metric we employ is the
Kolmogorov-Smirnov (K-S) statistic D, the maximum value of
the absolute difference between the two (Zpnot and zgpec) cumula-
tive redshift distribution functions. An advantage of the K-S statis-
tic is that it does not require binning the data in redshift. However,
our use of the K-S statistic to quantify the difference between the
Zphot aNd Zgye distributions of the validation set likely does not ad-
here to formal statistical practice, since it turn outs that the prob-
ability for the K-S statistic for both cases we consider is very close
to zero (Press et al. 1992).
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Fig. 6.—Performance metrics zyas, 0, and ogg for the NN D1 and NN CC2 validation sets as functions of zgpe. for » < 20 and » > 20. The increased scatter for objects
withz > 0.6 is due to the 4000 A break shifting out of the 7 passband at around z = 0.7; beyond that redshift, the estimator effectively relies on only two passbands (i and z)
to determine the photo-z’s. Note that faint objects (» > 20) have worse scatter at low redshifts for both cases. This is likely due to the fact that the faint, low-redshift objects
in the validation set are predominantly blue dwarfs or irregular galaxies that do not have strong 4000 A breaks; in this case, the photo-z estimator must rely on less
pronounced spectral features, resulting in larger photo-z scatter. [See the electronic edition of the Journal for a color version of this figure.]
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Table 3 shows the values of 04;i; and of the K-S statistic D for
the validation set for the D1 and CC2 NN photo-z’s, for different
ranges of » magnitude. Although the CC2 photo-z distribution is
aworse overall match to the zgye. distribution for the validation set,
it works better than D1 for » > 18. Since the photometric sample
is dominated by objects at » > 20 (see Fig. 1), these results sug-
gest that CC2 should do a better job in estimating the redshift dis-
tribution of the photometric sample, even though D1 performs
better by the standards of zyj,s and o.

The redshift distributions for the validation set are shown in
Figure 8 for the same bins of » magnitude as in Table 3. The D1
and CC2 zyp distributions are shown in gray, and the solid curves
correspond to the zge distributions. The similarities between
the zppot and zgyee distributions are consistent with the results of
Table 3.

In § 4.3, we noted that the zy distribution of the spectroscopic
sample, weighted to reproduce the color and magnitude distribu-
tions of the photometric sample, provides an estimate of the un-
known redshift distribution of the photometric sample. The zype
distribution for the photometric sample, computed using NN D1
or CC2, provides another estimate of the true redshift distribution

TABLE 3
Opist AND K-S STATISTIC FOR REDSHIFT DISTRIBUTION

Odist K-S StaTistic
cC2 D1 cc2 D1
0.0392 0.0330 0.0632 0.0391
0.0390 0.0430 0.0520 0.0533
0.0391 0.0399 0.0366 0.0413
0.0403 0.0471 0.0363 0.0665
0.0652 0.0702 0.1051 0.1306
0.0383 0.0338 0.0485 0.0307

Note.—oygisr and K-S statistic results for CC2 and D1 NN photo-z’s for the
validation set.

for the photometric sample, but it is one that we know suffers from
bias (e.g., Fig. 5). While we have not shown that the weighted zgpe.
estimate of the redshift distribution is unbiased, it has the advan-
tage that it makes direct use of the statistical properties of the pho-
tometric sample, and we believe it is our best estimate of the
photometric sample redshift distribution. Our final test of photo-z
performance therefore compares the zp distribution for the pho-
tometric sample for the two NN cases with the weighted zgy. dis-
tribution of the spectroscopic sample. Agreement between the
weighted z,. distribution and either one of the z,p,; distributions
does not guarantee that they are correct, but it at least provides a
useful consistency check.

In Figure 9, we show the estimated redshift distributions of a
random subsample containing ~1% of the objects in the DR6
photometric sample for both the CC2 and D1 NN cases. The col-
ored regions correspond to the zpyo distributions, and the solid
lines indicate the weighted zy,. distribution of the spectroscopic
sample. The zppot distributions for CC2 are closer matches to the
weighted zg,e distributions for » > 18, and they do not show the
peculiar features that the D1 photo-z distributions display, partic-
ularly at faint magnitudes. By the criterion of producing a more
realistic redshift distribution for the photometric sample, the
CC2 NN estimator is preferred.

5.3. Photo-z Errors

In order to test the quality of our photo-z error estimates calcu-
lated with the NNE method, we introduce the concept of empir-
ical error. For a set of objects (within the validation set) with
similar NNE error, the empirical error o2 is defined as the 68%
width of the ‘thot — zspec‘ distribution for the set. If the NNE es-
timator works properly, objects with similar NNE error should
have similar underlying error distributions; i.e., the NNE error
should correlate well with the empirical error.

Figure 10 shows the performance of the photo-z error estima-
tor by plotting the computed NNE error ¢ NNE as a function of the
corresponding empirical error for the validation set. Results are
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Fic. 8.—Redshift distributions for the galaxies in the validation set for different r-magnitude bins. Left: NN D1. Right: NN CC2. The gray regions indicate the NN
photo-z distributions, while the black lines are the spectroscopic redshift distributions. By eye, both NN cases recover the true redshift distributions of the validation set well,
except in the faintest magnitude bin, where the photometric errors become large. [See the electronic edition of the Journal for a color version of this figure.)

shown for the D1 and CC2 NN photo-z’s. The empirical error was
calculated for bins containing 100 objects with similar cNVE. As
expected, faint objects (» > 20) have larger errors than bright ob-
jects (r < 20). The NNE estimated error correlates well with the
empirical error even for the faint objects, indicating that the error
estimator works properly for all magnitudes. The bulk of the bright
objects have o NNE in the range 0.01-0.04, which is consistent with

the overall rms photo-z scatter of o ~ 0.03 indicated in Figure 4.
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Likewise, faint objects have o"™E in the range 0.02-0.3, while
o ~ 0.13 for those objects. The NNE error is therefore a robust
indicator of an object’s photo-z quality. In particular, we have car-
ried out tests in which we cut objects with large NNE error from
the sample, and found that the remaining sample has smaller
photo-z scatter and fewer catastrophic outliers. For applications
in which photo-z precision is more important than completeness
of the photometric sample, this can be a useful procedure.
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Fic. 9.—Estimated redshift distributions for a random subsample of 1% of the galaxies in the DR6 photometric sample in different 7-magnitude bins. Left: NN D1.
Right: NN CC2. Gray areas show the zp, distributions. Black lines show the estimated redshift distributions from the spectroscopic sample weighted to match the
magnitude and color distributions of the photometric sample. Even though the two NN cases correctly recover the validation set redshift distribution (Fig. 8), their photo-z
distributions for the photometric sample disagree. The photo-z distribution for D1 shows a peak at z ~ 0.4 that results mainly from the 20 < » < 21 bin. The CC2
distribution does not show such strong features, and in general matches the weighted zg.. distribution better. [See the electronic edition of the Journal for a color version of

this figure.)
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In Figure 11, we plot the normalized error distribution, i.e., the
distribution of (zphot — Zspec)/o N, for objects in the spectro-
scopic sample, using the D1 NN estimator. The solid lines are
the data, and the dotted lines show Gaussian distributions with
zero mean and unit variance. The upper panels show results for
the galaxies in the SDSS Main and LRG spectroscopic sam-
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-4 -2 0

(thoti Zspec) /UENE

Fig. 11.—Distributions of (zpnot — Zspec )/ for objects in the spectroscopic
sample, with photo-z’s calculated using NN D1; the results for NN CC2 are
very similar. The solid lines are the data, and the dotted lines are Gaussians with
zero mean and unit variance. Top left: SDSS Main spectroscopic sample. Top
right: SDSS LRG sample. Bottom left: Validation-set galaxies with » < 20.
Bottom right: Validation-set galaxies with » > 20. In all cases the photo-z errors are
reasonably well modeled by Gaussian distributions. [See the electronic edition of
the Journal for a color version of this figure.]

ples. The lower panels show results for all validation set galax-
ies, divided into bright (» < 20) and faint (» > 20) samples. These
plots indicate that, averaged over the bulk of the spectroscopic
sample, the photo-z estimates are nearly unbiased, the NNE error
provides a good estimate of the true error, and the NNE error can
be approximately interpreted as a Gaussian error in this average
sense. Note that this does not imply that the photo-z error distri-
butions in bins of magnitude or redshift are unbiased Gaussians:
Figures 5 and 6 show that they are not.

One potential source of photometric redshift bias is the effect
of redshift cuts placed on the training set, such as the zgpec < 1.5
cut used in our sample. For example, a (very unlikely) bright,
high-redshift photometric set object with magnitude » = 21.0
and zgpec = 3.0 cannot have a correct photometric estimate of its
redshift simply because the training set zy,.. range does not cover
the object’s true redshift. D’ Abrusco et al. (2007) have investigated
this issue, and have concluded that the level of such contamination
is a few percent for their training set sample with zg,.. < 0.5 and
photometric set sample limited to » < 21. Because our training set
redshift coverage reaches zge. = 1.5 and our photometric set limit
is comparable to that of d’ Abrusco et al. (2007), we expect the con-
tamination level of our sample to be similar to, if not much better
than, the d’Abrusco et al. (2007) estimates. In addition, the ex-
pected peak of the redshift distribution of a survey like the SDSS
isz ~ 0.5 forr < 22, and therefore the chance of a galaxy having
Zspec > 1.5 is small.

6. QUERY FLAGS AND CAVEATS

When querying the SDSS data server to produce the photo-
metric sample for which we estimated photo-z’s, we set the most
relevant flags needed to produce a clean galaxy sample. However,
some applications may require a more stringent selection of ob-
jects. We advise users of the catalog to read the documentation
about producing a clean galaxy sample on the SDSS Web site.'* In
particular, users should consider requiring the BINNED1 (object

13 See http://cas.sdss.org /dr6/en/help/docs/algorithm.asp.
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detected at >5 o) flag and removing objects with the NODEBLEND
(object is a blend, but deblending was not possible) flag. The vari-
ous PHOTO flags are described in more details at the above Web
site, as well as in Appendix A.

Finally, we note that the training of the photo-z estimators in-
cluded only galaxies, not stars. As a result, photo-z estimates for
stars that contaminate the photometric sample will be wrong, and
cutting objects with low zype Will not remove them. Our tests on
star-galaxy separation in the photometric sample are briefly de-
scribed in Appendix B.

7. ACCESSING THE CATALOG

The photo-z catalog can be accessed from the photoz2 table
in the DR6 context on the SDSS CasJobs site.'* A query similar
to the one in Appendix A provides all objects for which we com-
puted photo-z’s. Alternatively, one can simply perform a query
that searches for objects with a photoz2 entry.

In addition to the photoz2 table in the SDSS CAS, an indepen-
dent photoz table is also available, for which the photo-z’s have
been computed using a template-based technique; see I. Csabai
etal. (2008, in preparation) and Adelman-McCarthy et al. (2007).

8. CONCLUSIONS

We have presented a public catalog of photometric redshifts for
the SDSS DR6 photometric sample using two different photo-z
estimates, CC2 and D1, based on the NN method. As a consis-
tency check, we have also calculated photo-z’s using the NNP
method, a nearest neighbor approach, which gives very good
agreement with the NN results. The CC2 and D1 photo-z results
are comparable. For the validation set, the D1 photo-z estimates
have lower photo-z scatter for bright galaxies (» < 20), and scat-
ter similar to, but slightly smaller than, that of CC2 for objects
with » > 20. Our tests indicate that the SDSS photo-z estimates
are most reliable for galaxies with » < 20, and that the scatter
increases significantly at fainter magnitudes. For faint galaxies
(r > 20), we recommend using the CC2 photo-z estimate, since
the CC2 z,po; distribution most closely resembles the zgye. distri-
bution for the validation set and the weighted zg,. estimate for the
redshift distribution of the photometric sample. For users who

14 See http://casjobs.sdss.org/casjobs/.

Vol. 674

wish to use, for simplicity, a single photo-z estimator over the full
magnitude range, we recommend using CC2.

Finally, we have demonstrated that the NNE error estimator,
included in the public catalog, provides a reliable measure of the
photo-z errors, and that the overall scaled photo-z errors are nearly
Gaussian.
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APPENDIX A

DATA QUERY CODE

Here we provide the SDSS database query used to obtain part of the catalog containing the photometric sample used in this paper.
Notice that the query requires the TYPE flag to be set to 3 (galaxies), and selects objects with dereddened model magnitude » < 22.0 to
reflect the SDSS nominal detection limit. The query to obtain objects with right ascension (R.A.) in the range [0, 170) is

declare @BRIGHT bigint set @BRIGHT=dbo.fPhotoFlags(’BRIGHT’)

declare @SATURATED bigint set @SATURATED=dbo.fPhotoFlags (’>SATURATED’)

declare @SATUR_CENTER bigint set @SATUR_CENTER=dbo.fPhotoFlags(’SATUR_CENTER’)

declare @bad-flags bigint set @bad-flags=(@SATURATED | @SATUR_CENTER | @BRIGHT )

select

objID, ra, dec,type,dered_u,dered_g,dered_r,dered_i,dered_z,
petroR50_u, petroR50_g, petroR50_r, petroR50_1i, petroR50_z,
petroR90_u, petroR90_g, petroR90_r, petroR90_i, petroR90_z

into MyDb.all_ra_0_170
FROM PhotoPrimary

WHERE ((flags & @bad_flags)) = 0 AND (dered_r<=22.0) AND (ra>=0.0) AND (ra<170.0)

AND (type = 3)

Here we provide a brief description of the flags used in the query: BRIGHT indicates that an object is a duplicate detection of an
object with a signal-to-noise ratio greater than 200 o. SATURATED indicates that an object contains one or more saturated pixels.
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FiG. 12.—Completeness (fop) and purity (bottom) for the Bayesian and PHOTO TYPE galaxy classifications, as well as for a combination of the two, using a sample of
galaxies with spectroscopic classification. Results for the Bayesian separator have the probgals lower bound set to 0.5. [See the electronic edition of the Journal for a
color version of this figure.)

SATUR_CENTER indicates that the object center is close to at least one saturated pixel. Note that in selecting PRIMARY objects (using
PhotoPrimary), we have implicitly selected objects that either do not have the BLENDED flag set, or else have NODEBLEND set or
nchild equal to zero. In addition, the PRIMARY catalog contains no BRIGHT objects, so the cut on BRIGHT objects in the query above is
in fact redundant. BLENDED objects have multiple peaks detected within them, which PHOTO attempts to deblend into several CHILD
objects. NODEBLEND objects are BLENDED, but no deblending was attempted on them, because they are too close to an EDGE, they are
too large, or one of their children overlaps an edge. A few percent of the objects in our photometric sample have NODEBLEND set; some
users may wish to remove them.

We also suggest that users require objects to have the BINNED1 flag set. BINNED1 objects were detected at >5 o significance in the
original imaging frame.

The SDSS Web site'® provides further recommendations about flags, which we strongly recommend that users read.

APPENDIX B
TESTS ON STAR-GALAXY SEPARATION

We used the SDSS database TYPE flag to select the galaxy photometric sample for our photo-z catalogs. To study the robustness of
the TYPE flag in separating galaxies from stars, we also carried out tests using an independent star-galaxy classifier. Here we briefly
describe both of these techniques, and show the results obtained on photometric and spectroscopic samples.

The TYPE flag is based on the star-galaxy separator in the SDSS PHOTO pipeline, described in Lupton et al. (2001) and updated in
Abazajian et al. (2004). For a given object, the pipeline computes the PSF and cmodel magnitudes in each passband,'® where the
cmodel magnitude is a measure of the flux using a composite of the best-fit de Vaucouleurs and exponential models of the light profile.
If the condition

MpSF — Mcmodel > 0.145 (Bl)

is satisfied, TYPE is set to GALAXY for that band; otherwise, TYPE is set to STAR. The object’s global TYPE is determined by the same
criterion, but now applied to the summed PSF and cmodel fluxes from all passbands in which the object is detected. Lupton et al. (2001)
show that an earlier version of this simple cut works at the 95% confidence level for SDSS objects brighter than » = 21.

The second star-galaxy separator we tested is the galaxy probability defined in Scranton et al. (2002). The galaxy probability (here-
after probgals) is a Bayesian probability estimate that an object is a galaxy (and not a star), given the object’s magnitudes and con-
centration parameter. Here the concentration parameter is not the ratio of Petrosian radii, but is defined as the difference between an
object’s PSF and exponential-model » magnitudes. This concentration parameter is close to zero for stars, is positive for bright gal-
axies, and approaches zero as galaxies become fainter.

We conducted some simple tests to compare these classification schemes. If we set the Bayesian probgals threshold to a value
between 0.5 and 0.9, then both methods agree on the classification of more than 90% of the objects for a random 1% subset of the SDSS

'3 See http://cas.sdss.org /dr5/en/help/docs/algorithm.asp?key =flags.
16 See http://www.sdss.org /dr5/algorithms /photometry.html.
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TABLE 4
DRS5 CaraLoG Flag

Flag No. Galaxies Object Description
e ———— 86.1 million All
12.6 million Complete and bright
0.6 million Incomplete and bright
2 59.0 million Complete and faint
Bt 13.9 million Incomplete and faint

Notes.—The flag scheme for the DRS catalog is based on object
detection in some/all passbands and the » magnitude. Incomplete objects
are undetected in at least one of the passbands (ugriz), and faint objects
have r > 20.

photometric sample. We also tested the methods on a spectroscopic sample of 29,229 galaxies and stars (counting independent photometric
measurements of each object) from the 2SLAQ and DEEP2 catalogs with 7 < 22. Defining stars as objects with zge. < 0.01, the sample
contains 24,541 galaxies and 4688 stars. We wish to compare this spectroscopic “truth table” with the photometric classification of the two
methods and with a combined method that classifies an object as a galaxy if and only if both separators classify it as a galaxy. For the purposes
of this test, we say that the Bayesian scheme classifies an object as a galaxy if probgals > 0.5. We define galaxy completeness as the ratio of
correctly identified galaxies to the total number of galaxies in the spectroscopic sample. Purity is defined as the ratio of correctly identified
galaxies to the number of objects identified (correctly or not) as galaxies by the classifier. The purity depends in part on the relative numbers of
galaxies and stars in the spectroscopic sample.

Figure 12 shows the completeness and purity of the resulting galaxy catalogs in bins of » magnitude for this spectroscopic sample.
Overall, the Bayesian separator and PHOTO TYPE produce similar results for galaxy purity and completeness. Moreover, the agreement
between the two classification methods is quite good on an object-by-object basis. The Bayesian separator with probgals > 0.5
achieves slightly higher completeness and slightly lower purity. By varying the probgals boundary, we could improve the purity of
the Bayesian galaxy sample at the expense of degrading its completeness. We note that the best value of probgals to use in defining a
galaxy photometric sample depends on the scientific applications of the sample, i.e., on whether completeness or purity is the more im-
portant feature. In statistical applications, instead of defining a galaxy sample, one can also choose to weight objects by their Bayesian
probability (Scranton et al. 2002).

Based on this test, we conclude that the photometric sample for which we have estimated photo-z’s has better than 90% galaxy
purity.

APPENDIX C
PHOTOMETRIC REDSHIFTS FOR SDSS DR5

An earlier version of the photo-z catalog, produced for SDSS Data Release 5 (DRY), is publicly available on the SDSS DR5 Web
site (and is also called photoz2). The methods used to construct that photo-z catalog were similar to the ones employed here for DR6,
but the latter incorporates a number of important improvements. Here we briefly outline the differences between the two. We strongly
recommend use of the DR6 photo-z catalog instead of the DRS5 catalog.

The photometric galaxy sample selection has improved from DR5 to DR6, because we used more stringent cuts in defining the DR6
sample. The DR6 sample selection is described above in Appendix A. The DRS photometric galaxy sample selection required the
cmodel and model » magnitudes to lie in the ranges r.mogel € (14.0,22.0) and rpeqer € (13.5,22.5), and also required the value of the
smear polarizability (Sheldon et al. 2004) to be m, > 0.8. Also, for DRS, the Bayesian estimator was used to separate stars from
galaxies (see Appendix B), with the value probgals > 0.8, while for DR6 we used PHOTO TYPE. The additional cuts used for the DR6
catalog have produced a cleaner and more reliable galaxy sample.

The DR5 photo-z catalog included a number of flags describing the expected photo-z quality, shown in Table 4. These flags were
based on the detection or nondetection of the object in all passbands, and on the value of the » model magnitude. An object was
classified as bright (faint) if » < 20 (» > 20). An object was flagged as “incomplete” if it was not detected in all five SDSS passbands.
Table 4 shows the corresponding flag values and the number of objects assigned each flag value. For the DR6 sample, given the stricter
sample selection, a very small number of objects would have been classified as incomplete by the definition above, and they have been
removed from the sample. As a result, for DR6, we only supply the bright/faint flag, as shown in Table 5.

TABLE 5
DR6 CataLoc Flag

Flag No. Galaxies Object Description
e 77.4 million All
0.... 11.5 million Bright
2.... 65.9 million Faint

Note.—The flag scheme for the DR6 catalog is based solely on the
on the » magnitude: faint objects have » > 20.
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The spectroscopic training set used for the DR6 photo-z catalog has important additions compared to the one used for the DRS
catalog. In particular, for DR6 we added the DEEP2 spectroscopic catalog (which became publicly available), which made the
training set more complete at faint magnitudes. We also implemented more stringent spectroscopic quality cuts to the training set used
for DR6.

Unlike the DRS training set, the DR6 training set does not contain objects from the SDSS “special” plates, which are extra spec-
troscopic observations designed to target specific objects for various scientific studies (Adelman-McCarthy et al. 2006). In our tests,
we find that the lack of special plates does not result in any degradation of the photo-z quality.

The photo-z algorithm also changed from DRS to DR6: we increased the number of hidden-layer nodes in the NN, and we added the
concentration indices to the data inputs. Our tests indicated that this leads to improved photo-z performance according to our metrics.
In addition, the CC2 method further differs from DRS5 photo-z’s in that CC2 uses only the color information and not the raw mag-
nitudes. For general purpose, full-sample photo-z’s, we recommend using CC2 photo-z’s over both DR5 and D1 photo-z’s. Finally, we
carried out more extensive tests of the DR6 photo-z’s than were done for DRS, increasing our confidence in the robustness of the
photo-z estimates.
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